Linear noise approximation for oscillations in a stochastic inhibitory network with delay.
نویسندگان
چکیده
Understanding neural variability is currently one of the biggest challenges in neuroscience. Using theory and computational modeling, we study the behavior of a globally coupled inhibitory neural network, in which each neuron follows a purely stochastic two-state spiking process. We investigate the role of both this intrinsic randomness and the conduction delay on the emergence of fast (e.g., gamma) oscillations. Toward that end, we expand the recently proposed linear noise approximation (LNA) technique to this non-Markovian "delay" case. The analysis first leads to a nonlinear delay-differential equation (DDE) with multiplicative noise for the mean activity. The LNA then yields two coupled DDEs, one of which is driven by additive Gaussian white noise. These equations on their own provide an excellent approximation to the full network dynamics, which are much longer to integrate. They further allow us to compute a theoretical expression for the power spectrum of the population activity. Our analytical result is in good agreement with the power spectrum obtained via numerical simulations of the full network dynamics, for the large range of parameters where both the intrinsic stochasticity and the conduction delay are necessary for the occurrence of oscillations. The intrinsic noise arises from the probabilistic description of each neuron, yet it is expressed at the system activity level, and it can only be controlled by the system size. In fact, its effect on the fluctuations in system activity disappears in the infinite network size limit, but the characteristics of the oscillatory activity depend on all model parameters including the system size. Using the Hilbert transform, we further show that the intrinsic noise causes sporadic strong fluctuations in the phase of the gamma rhythm.
منابع مشابه
Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملStochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملMultiscale Analysis of Stochastic Delay Differential Equations
We apply multi-scale analysis to stochastic delay-differential equations, deriving approximate stochastic equations for the amplitudes of oscillatory solutions near critical delays of deterministic systems. Such models are particularly sensitive to noise when the system is near a critical point, which marks a transition to sustained oscillatory behavior in the deterministic system. In particula...
متن کاملCombination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 90 1 شماره
صفحات -
تاریخ انتشار 2014